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Robot-based bridge indirect monitoring leveraging road data filtering for modal 
frequency estimation

Furkan Lulecia , Abdulrrahman Algadia, Zhenkun Lib and F. Necati Catbasa 

aDepartment of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA; bDepartment of Civil 
Engineering, Aalto University, Espoo, Finland 

ABSTRACT 
Developments in indirect monitoring of bridges demonstrated practical solutions for network-level life- 
cycle bridge assessment and evaluation. Utilizing mobile robots is a new area for indirect monitoring, 
offering scalable approaches to data collection and assessment. This study investigates and experimen
tally validates a drive-by monitoring methodology using a four-wheeled robot equipped with a sens
ing system. The methodology employs a simple yet practical and effective approach to isolate the 
bridge vibration response from interfering factors (road roughness, vehicle dynamics, noise) by apply
ing frequency-domain filtering using data collected from the adjacent roadway. Using the method
ology, the study explores the effect of varying driving speeds, drive-stop scenarios, and the robot’s 
trajectory on different sides over the bridge to determine optimal conditions for precise bridge mode 
(frequency) identification. Nine experiments conducted on a real-world bridge under jumping excita
tion demonstrate the identification of up to six modes, with an average variation of 2% compared to 
reference monitoring data. Driving trajectories showed minimal impact on results, though runs on all 
sides suggest comprehensive identification. Robot’s dual-capability for real-time mode identification 
and visual analysis is a promising approach for local assessments in bridge networks, complementing 
large-scale monitoring by Connected Vehicles in a multi-tiered reliability framework.
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1. Life-Cycle Civil Engineering, and role of SIE 
journal and Prof. Dan Frangopol’s contributions

Over the past two decades, Life-Cycle Civil Engineering 
(LCCE) has advanced significantly, focusing on the entire 
lifespan of structures, from planning and design to construc
tion, operation, monitoring, maintenance, rehabilitation, and 
eventual decommissioning. The LCCE aims to ensure struc
tural safety while optimizing performance, cost, and sustain
ability. The Structure and Infrastructure Engineering (SIE) 
Journal, celebrating its 20th anniversary, has played a central 
role in disseminating research on these topics, a testament 
to the vision of its founding editor-in-chief, Prof. Dan 
Frangopol. He has profoundly shaped life-cycle engineering, 
advancing scientific knowledge and practical applications in 
structural reliability (Xin et al., 2021), life-cycle performance 
(Akiyama et al., 2020; Yang & Frangopol, 2019), disaster 
resilience (Bocchini et al., 2014; Bocchini & Frangopol, 
2012), and bridge engineering (Akg€ul & Frangopol, 2004). 
As the Founding President of IABMAS (International 
Association for Bridge Maintenance and Safety) and 
IALCCE (International Association for Life-Cycle Civil 
Engineering), he has fostered global collaboration in infra
structure resilience and management. His mentorship has 
also shaped many researchers, including the senior author 
of this paper, with collaborations in long-span bridge 

monitoring (Catbas et al., 2008), system reliability and load 
rating of movable bridges (Catbas et al., 2011; Gokce et al., 
2011), condition assessment of heavy movable structures 
(Catbas et al., 2014; Gokce et al., 2013), and network-level 
resilience (Mitoulis et al., 2022). It is an honor to contribute 
to this special issue celebrating SIE’s 20th anniversary and 
Dr. Frangopol’s transformative legacy in engineering. His 
contributions to infrastructure safety and management have 
inspired researchers and practitioners to develop novel solu
tions for resilient and sustainable systems.

One of his seminal works integrates time-dependent 
structural reliability prediction, highway network perform
ance assessment, and life-cycle cost analysis, optimizing 
maintenance resources by balancing maintenance, bridge 
failure, and costs (Liu & Frangopol, 2006). More recently, 
his review of resilience in infrastructure systems, particularly 
bridges and transportation networks, has provided frame
works for informed decision-making in resource allocation 
at the network level (Capacci et al., 2022). Figure 1 illus
trates a resilience assessment framework for bridge net
works, highlighting the benefits of data-driven vulnerability 
analysis.

It is also indicated that in most of the research works 
that tackled the problem of quantifying resilience to support 
maintenance and management programs of aging and dete
riorating structures; the main focus was mainly associated 
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with planning optimal retrofit strategies to reduce the risk 
of network inoperability due to the failure of existing vul
nerable assets (Capacci et al., 2022). One of the critical 
aspects of optimal decision-making at the network level is 
to have objective data, desirably data obtained from 
Structural Health Monitoring (SHM) systems of the bridges 
in the network. However, this can be challenging and is not 
a feasible solution as it would require sensors, a dedicated 
data acquisition system, and permanent installation on 
bridges and other infrastructures. The advances in mobile 
sensing technologies, particularly the emerging research 
domain of vehicle/robot-based drive-by monitoring for 
identifying the bridge operational dynamics and structural 
condition assessment, offer new opportunities for monitor
ing and assessing bridge infrastructures in a more practical 
and efficient means.

In light of the discussion above, this study presents an 
experimental investigation into an emerging area of drive-by 
bridge monitoring using a mobile robot equipped with 
multi-modal sensors under various driving scenarios, not
ably, only the onboard accelerometer (part of the Inertial 
Measurement Unit) was utilized for drive-by monitoring in 
this study. The study contributes to bridge health monitor
ing and reliability through multiple key advancements, as 
listed below:

1. The study introduces a methodology to isolate bridge 
response from drive-by data by mitigating the effects of 
road roughness, vehicle-induced dynamics, and other 
contributory noise through frequency-domain filtering 
of the bridge data using road data as a reference. This 

filtering-based approach enhances mode identification 
by: (i) making true bridge mode peaks more distinct 
and reducing the likelihood of missing subtler frequen
cies, (ii) eliminating false mode peaks observed in the 
raw data, and (iii) enabling the detection of additional 
bridge modes previously undetectable. However, minor 
residual effects remain after filtering, with further 
refinement approaches proposed in Section 8 to 
improve bridge response isolation.

2. The study establishes an optimal drive-by monitoring 
strategy for bridge mode identification. By systematic
ally evaluating different driving configurations, it dem
onstrates that a drive-stop strategy maximizes mode 
detection by increasing data volume and clarity, while 
slow driving enhances mode peak resolution. The study 
suggests a drive-stop strategy at a slow speed for effect
ive drive-by monitoring of bridge vibrations.

3. The study establishes trajectory-based recommendations 
for comprehensive drive-by bridge mode identification. 
It finds that while driving along the bridge center or 
edges does not significantly impact bending mode 
detection, torsional modes are more reliably captured 
along the bridge edges. The study emphasizes the need 
for multi-trajectory runs to ensure comprehensive mode 
identification across various bridge types.

4. The study further proposes a conceptual approach that 
integrates Connected Vehicles (CVs) and mobile robots 
for bridge network reliability monitoring. While CVs 
provide continuous network-level assessments, robots 
equipped with multi-modal sensors offer localized pre
cision for bridge mode identification and detailed struc
tural assessment and evaluation. This multi-tiered 

Figure 1. Flowchart for resilience assessment of road networks with vulnerable bridges (Capacci et al., 2022). Note that the network operation and functionality 
depend on multiple bridges and their performance, which can be determined by analysis, monitoring data, or a combination.
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method has a promising application in accurate reliabil
ity index calculations, proactive infrastructure manage
ment, and optimized resource allocation.

Given these contributions, the following sections detail 
the background of the condition of civil infrastructure sys
tems with current challenges and needs, as well as recent 
advances in bridge management (Section 2). Section 3
presents the relevant literature on drive-by monitoring, 
focusing on the use of mobile robotics. Section 4 explains 
the objective and scope of this study. Section 5 introduces 
the methodology for bridge mode identification using robot- 
based drive-by bridge monitoring. Section 6 details the 
equipment used in the study, mobile robotic platform, and 
portable SHM system. Section 7 provides details regarding 
the test scenarios and experimentation and demonstrates the 
real-time bridge data analysis. Section 8 presents the results 
of the methodology with a comprehensive discussion and 
potential future research directions. Section 9 discusses an 
integrated approach for bridge network reliability monitor
ing. Finally, Section 10 concludes the study with a summary 
and a list of conclusions.

2. Background in condition of civil infrastructure

2.1. Current challenges and needs

Aging infrastructure is a critical global challenge, particu
larly in the United States (U.S.), where over 617,000 bridges 
and other vital elements like towers, airports, dams, and 
waterways are under increasing strain. Reports indicate that 
42% of bridges are over 50 years old, with 46,154 classified 
as structurally deficient, contributing to a $125 billion back
log in repairs (Iacovino et al., 2022). These deficiencies 
threaten economic productivity and community resilience 
(Luleci et al., 2024). Climate-induced events, including hur
ricanes, floods, and extreme weather, accelerate structural 
deterioration, further straining already aging systems (Wahl 
et al., 2017). These events often exceed infrastructure capaci
ties, underscoring the urgent need for proactive monitoring 
strategies (Jamali et al., 2019). Aging and damaged 
structures pose significant risks to public safety, disrupt eco
nomic activities, and compromise the reliability of transpor
tation networks (Chen et al., 2002). Addressing these 
challenges requires a shift from reactive to proactive man
agement, employing advanced monitoring tools to detect 
and mitigate issues before they escalate, ensuring both safety 
and resilience in critical infrastructure systems.

The evolution of infrastructure inspections in the U.S., 
particularly for bridges, has been driven by historical collap
ses and advancements in technology (Cao et al., 2020; 
FHWA, 2019; Rittmeyer et al., 2022; Swenson & Ingraffea, 
1991). This has led to the establishment of rigorous inspec
tion standards, including initial, routine, in-depth, damage, 
and special inspections conducted by qualified inspectors 
(FHWA, 2012b). The most common type of inspection, ini
tial and routine inspections, primarily rely on traditional 
methods, including human-based visual evaluations of 

structures and using tools like chain drag and hammer tap
ping to assess structural integrity (FHWA, 2012a). While 
these approaches are widely utilized due to their simplicity, 
they are labor-intensive, subjective, and often fail to identify 
subtle structural issues (National Academies of Sciences 
Engineering & Medicine, 2019). Periodic inspections, man
dated by local and federal codes, provide a snapshot of 
structural conditions but lack the capability to track real- 
time changes or detect early-stage damage (FHWA, 2001).

In-depth, damage, and special inspections are employed 
when detailed assessments are necessary, occasionally utiliz
ing advanced, technology-enabled solutions. Nondestructive 
Testing/Evaluation (NDT/E) techniques, such as ultrasound, 
infrared imaging, and ground-penetrating radar, provide 
high precision in identifying localized defects, making them 
critical for thorough inspections (Alqurashi et al., 2025; Zaki 
et al., 2015). However, these methods are resource-intensive, 
laborious, and challenging to scale across extensive bridge 
networks. Similarly, SHM systems, which deploy sensors for 
continuous monitoring of structural behavior, represent a 
significant advancement in proactive management (Debees 
et al., 2024). Due to their high implementation costs and 
complexity, SHM systems are prioritized for landmark 
structures, such as iconic or high-risk bridges, where failure 
would have catastrophic consequences. Despite their impor
tance, these landmark and high-priority bridges account for 
only a very small fraction of the overall bridge network 
(Capacci et al., 2022). The majority of bridges, including 
long-span, medium, and small bridges critical for regional 
connectivity and economic activities, lack access to such 
advanced monitoring systems (Akg€ul & Frangopol, 2003). 
This disparity underscores the urgent need for scalable, 
cost-effective, and efficient solutions to manage and main
tain a vast and aging bridge network effectively (Mendoza- 
Lugo et al., 2024). In summary, the key needs for bridge 
infrastructure operation and management include:

� Enhancing real-time monitoring and predictive capabil
ities to provide continuous insights into structural condi
tions, enabling early detection of potential issues and 
reducing the likelihood of costly and catastrophic 
failures.

� Creating scalable and cost-effective frameworks to extend 
monitoring coverage to the vast majority of aging 
bridges, including long-span, medium, and small struc
tures, that currently lack adequate systems.

2.2. Recent advances in bridge assessment: drive-by 
monitoring

Recent years have witnessed remarkable advancements in 
bridge applications, leveraging technology-oriented 
approaches (Luleci et al., 2024). One particular area is the 
utilization of vehicle-based data to monitor and assess 
bridges. Research has shown that vibration data collected 
from vehicles as they drive over bridges contains valuable 
insights into the structural health and condition of the 
bridge (Malekjafarian et al., 2015). This innovative 
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approach, termed drive-by bridge monitoring, equips 
vehicles with sensors to assess bridge conditions, providing 
a practical, scalable, and resource-efficient alternative to tra
ditional monitoring methods (Li et al., 2024; Malekjafarian 
& OBrien, 2017). It is particularly advantageous for assess
ing large-scale bridge networks where conventional techni
ques are impractical or cost-prohibitive.

The growing prevalence of mobile data sources, including 
smartphone sensors such as accelerometers, has further pro
pelled this approach into prominence (Li, Lan., Feng, et al., 
2024; Mei & G€ul, 2019; Staniek, 2021). Smartphones in 
vehicles collect vibration data as vehicles traverse bridges, 
enabling valuable insights into structural health through 
crowdsourcing (Matarazzo et al., 2022; Peng, Li, Hao, et al., 
2023). This concept leverages data contributions from mul
tiple users, increasing monitoring coverage and reducing 
costs (Yao et al., 2019). Modern vehicles, especially 
Connected Vehicles (CVs), are equipped with advanced sen
sors that continuously gather and transmit data on parame
ters such as speed, location, and vibration (Chen et al., 
2021; Dennis et al., 2014). These data streams, particularly 
vibration data, are analyzed by centralized systems to iden
tify anomalies and assess structural conditions in near real- 
time (Mei et al., 2020). The emergence of Electric Vehicles 
(EVs), which are also CVs, adds another layer of precision 
by delivering cleaner, engine noise-free data inputs, enhanc
ing the accuracy and reliability of these monitoring systems.

With these advancements, drive-by bridge monitoring 
offers a promising pathway to more efficient and widespread 
bridge condition assessment to address the needs in practice 
as mentioned earlier: (1) real-time monitoring and early 
issue detection; (2) scalable and cost-effective bridge moni
toring frameworks. In this context, this study investigates 
and experimentally validates a mobile robot-based indirect 
monitoring methodology on a real-world operational bridge 
under various driving scenarios. The research utilizes a spe
cialized four-wheeled Unmanned Ground Vehicle (UGV, or 
robot, used interchangeably in this paper) equipped with 
multi-modal sensors to collect bridge response data and 
analyze it in near real-time. A simple yet practical and 
effective methodology is employed to ensure accurate bridge 
response capture as the robot traverses the bridge.

3. Relevant literature: drive-by and robot-based 
monitoring

This section provides a brief review of drive-by monitoring 
as well as the newly emerging field of robot-based drive-by 
monitoring by presenting some of the representative studies 
in the literature. The methodology of using vehicle-based 
responses for extracting bridge health or structural informa
tion was pioneeringly proposed (Yang et al., 2004). In that 
study, the authors conducted numerical simulations using a 
spring-mass vehicle model and a simple supported beam to 
simulate the Vehicle-Bridge Interaction (VBI) process. It 
was found that the bridge’s fundamental frequency could be 
identified from the accelerations of the vehicle body. This 
concept was later validated in 2005 through field tests 

conducted (Lin & Yang, 2005), which involved a tractor- 
trailer vehicle system and one span of the Da-Wu-Lun 
Bridge in Taiwan. Subsequently, the approach was extended 
to assess bridge conditions (Bu et al., 2006; Hester & 
Gonz�alez, 2015; Kim & Kawatani, 2008). These pioneering 
studies laid the foundation for using vehicles as moving sen
sors for monitoring and assessment of bridge infrastruc
tures, inspiring further research within the scientific 
community.

Over the past two decades, many studies have investi
gated the extraction of bridge information from vehicle 
responses through the VBI process using numerical simula
tions, laboratory experiments, and involving a few field tests 
(Malekjafarian et al., 2022; Singh et al., 2023; Xu et al., 
2024). As a foundational aspect, identifying bridge frequen
cies from vehicle accelerations has been a primary focus, as 
it forms the basis for advanced applications such as damage 
detection and bridge residual life prediction (Corbally & 
Malekjafarian, 2021; Li, Lan., Feng, et al., 2023).

Following the initial efforts in 2004 (Yang et al., 2004), 
researchers examined the effects of vehicle parameters, vari
ous signal processing techniques, and specially designed 
vehicles on the indirect identification of bridge frequencies 
(Jin et al., 2022; Li, Zhu, et al., 2022; OBrien et al., 2017; 
Yang, Li et al., 2022; Yang & Chang, 2009). However, two 
major challenges emerged during this process: (1) The inter
ference caused by road roughness; and (2) The influence of 
the vehicle’s own dynamic fingerprints within its responses. 
Solutions such as CVs, tapping scanning techniques, and 
vehicle amplifiers were explored to mitigate the impact of 
road roughness (Hu & Xiang, 2024; Jian et al., 2020; Kong 
et al., 2016; Xu et al., 2023). Despite these efforts, practical 
challenges remain. Large-scale management of CVs in oper
ational settings can be challenging due to substantial 
amounts of data (He & Yang, 2022; Yang, Li, Wang, et al., 
2022), while tapping scanning and vehicle amplifier methods 
often require vehicle modifications to suit bridge monitoring 
tasks. Addressing the issue of vehicle dynamics interference, 
researchers have applied various filters to isolate and remove 
vehicle frequencies from the data (Shirzad-Ghaleroudkhani 
& G€ul, 2021; Y. B. Yang et al., 2013).

However, this typically requires prior knowledge of the 
vehicle’s parameters. To overcome these limitations, the 
concept of Contact Point (CP) responses was introduced 
(Yang et al., 2018). CP responses represent the accelerations, 
velocities, or displacements at the contact points between 
the vehicle and the bridge, making them independent of the 
vehicle itself and solely influenced by road roughness and 
bridge vibrations (C. Liu et al., 2023; Singh & Sadhu, 2023). 
Despite its promise, deriving CP responses from vehicle 
data often requires precise measurements of the vehicle’s 
parameters (Corbally & Malekjafarian, 2021; Feng et al., 
2023), which poses significant barriers to practical imple
mentation. Consequently, there is an urgent need for a new, 
practical technique that enables rapid estimation of bridge 
modal parameters and facilitates effective bridge assessment.

In the last few years, with the advancements in hardware 
and signal communication technologies, robot-based 
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assessments (Sony et al., 2019) have been a prominent topic 
in infrastructure health monitoring, assessment, and main
tenance (Charron et al., 2019; Jahanshahi et al., 2017; Luleci 
et al., 2024; Sony et al., 2019; Tian et al., 2022). Robots can 
be categorized as Unmanned Ground, Aerial, and 
Underwater Vehicles (UGVs, UAVs, UUVs) in the context 
of infrastructure operation and maintenance. In this review, 
the use of UGVs (Luleci et al., 2024) is emphasized, rather 
than UAVs (Bolourian & Hammad, 2020; Zhao et al., 2021) 
and UUVs (Tsaimou et al., 2024; Waldner & Sadhu, 2024). 
In 2012, a study (Zhu et al., 2012) proposed Flexure-Based 
Mobile Sensing Nodes (FMSN) for system identification of a 
space frame bridge. This system utilized several magnetic 
wall-climbing robots that moved along the smooth surfaces 
of steel structures. Compared to traditional sensing networks 
on bridges, the frequencies extracted by FMSN could pro
vide reliable measurements.

In 2014, another work (La et al., 2014) developed a 
robotic nondestructive evaluation system for bridge deck 
inspection. The system integrated various tools, including 
surface cameras, ground-penetrating radar, acoustic arrays, 
and GPS. Experimental results demonstrated the robot’s 
ability to map deck cracks, corrosion, delamination, and 
concrete modulus effectively. In 2018, researchers intro
duced a mobile robot-based damage localization method 
using an adaptive Monte Carlo approach (Peel et al., 2018). 
The DiddyBorg robotic platform they developed was also 
employed to calculate the geometry of bridge bearings.

Moreover, the use of robotics in infrastructure health 
monitoring has expanded to include inspections of other 
bridge components and underwater structures (Gucunski 
et al., 2017). For instance, in 2020, one study (Jang et al., 
2021) designed a ring-type climbing robot to evaluate high- 
rise bridge piers automatically. Their results showcased the 
ability to create detailed digital crack maps of the target 
bridge pier. Additionally, another work (Jiao et al., 2024) 
designed a robot powered by hybrid driving methods, 
including combustion-based actuators and propeller thrust
ers. Using camera images processed with the YOLO (You 
Only Look Once) algorithm, they successfully identified 
various damages in underwater concrete structures. The 
existing literature highlights the growing importance and 
effectiveness of robotics in infrastructural condition 
assessment.

Recently, a few other studies have begun considering 
robots for the indirect monitoring of bridges. In 2016, 
researchers (Marulanda et al., 2017) employed a movable 
and stationary robot equipped with accelerometers to iden
tify bridge modal parameters. They successfully identified 
frequencies and modal shapes of an I-shaped beam sub
jected to ambient vibrations in a laboratory setting. In 2019, 
researchers (Mei et al., 2019) developed a simple robotic car 
to simulate a spring-mass vehicle and used a steel plate as 
the bridge deck in the laboratory. Mel-frequency cepstral 
coefficients were extracted from robot accelerations as dam
age indicators, and experimental results validated the effect
iveness of the proposed method. In 2023, another study 
(Shirzad-Ghaleroudkhani & G€ul, 2024) equipped a robotic 

car with a smartphone to collect various signals. This work 
accounted for operational effects such as engine vibrations, 
suspension system dynamics, and road roughness. An 
inverse filtering method (Shirzad-Ghaleroudkhani & G€ul, 
2021) was applied to mitigate the impact of these factors 
and emphasize bridge-related information. In the same year, 
researchers (Peng et al., 2023) extended indirect bridge 
health monitoring to an Internet of T-enabled framework 
by incorporating wireless accelerometers, temperature sen
sors, GPS, and a 4 G communication module on a robotic 
vehicle. A more recent study (Jian et al., 2024) introduced a 
low-cost robotic framework using Robo-Master EP. By com
bining stationary and mobile sensors on the robot, the study 
successfully identified the first two modal shapes of a 
footbridge.

Studies in the literature highlight the significant potential 
of indirect bridge monitoring for bridge assessment with 
promising both theoretical and analytical approaches. 
Though this research area is rapidly progressing, much of 
the research remains confined to numerical simulations and 
laboratory experiments, with limited field tests conducted in 
real-world operational conditions. This gap hinders the tran
sition of these methodologies from conceptual frameworks 
to practical applications. Proposed methods often face chal
lenges related to scalability, implementation, and adaptabil
ity to diverse conditions, limiting their real-world 
applicability. Additionally, while robot-based approaches 
have shown promise, their use in infrastructure assessment 
has been relatively limited. Specifically, the application of 
robots for indirect bridge monitoring is a new but rapidly 
evolving research area with significant potential to overcome 
existing barriers. However, this field is still in its early stages 
and requires further exploration to develop innovative, scal
able, and cost-effective solutions for practical bridge condi
tion monitoring.

Unlike previous studies that primarily relied on small 
robotic platforms in controlled environments, this study 
advances the field by implementing a field-tested UGV- 
based drive-by SHM approach and demonstrating its feasi
bility on real-world infrastructure. A key innovation of this 
work is the filtering-based methodology, which isolates 
bridge response from drive-by data by mitigating the effects 
of road roughness, vehicle-induced dynamics, and other 
noise sources in the frequency domain. This approach 
enhances bridge mode identification by making true bridge 
mode peaks more distinct, eliminating false peaks, and ena
bling the detection of additional bridge modes previously 
undetectable. Furthermore, this study systematically evalu
ates various robot-driving strategies, establishing that a 
drive-stop approach at slow speeds maximizes mode detec
tion by improving data clarity and peak resolution. 
Additionally, robot trajectory-based recommendations are 
introduced, highlighting that torsional modes are best cap
tured along bridge edges while bending modes remain 
unaffected by lateral positioning, emphasizing the need for 
multi-trajectory for optimum bridge drive-by monitoring. 
Beyond individual bridge monitoring, this study envisions 
a network-level approach by integrating UGV-based 
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monitoring with CV, where CVs provide continuous large- 
scale assessments while mobile robots enable localized, pre
cise evaluations. This multi-tiered framework lays the 
groundwork for scalable, proactive, and efficient infrastruc
ture health monitoring, moving beyond isolated bridge 
assessments toward comprehensive network reliability 
monitoring.

4. Study objective and scope

Given the review and the identified research gaps as out
lined in Section 3, the overarching objective of this study is 
as follows: Investigating and experimentally validating a 
practical and scalable methodology for indirect bridge moni
toring on a real-world operational bridge using a mobile 
robot equipped with multi-modal sensors. Under this cen
tral objective, the study defines several specific objectives. 
The first one seeks to investigate a simple but effective data 
processing approach to mitigate the interference of road 
roughness and vehicle dynamics in order to isolate the 
bridge response for bridge mode identification. Additionally, 
the study aims to explore the impact of varying driving 
speeds, drive-stop scenarios, and the robot’s trajectory on 
different sides of the bridge to determine the optimal condi
tions for precise bridge mode identification. The study fur
ther investigates the dual capability of integrating real-time 
mode identification with visual data capture and analysis 
over the bridge using robot-based drive-by monitoring to 
emphasize its potential to support rapid decision-making 
and early detection of structural condition changes. In sum
mary, this study aims to advance the field of indirect bridge 
monitoring and support the widespread adoption of mobile 
robotic platforms in infrastructure monitoring by addressing 
these key objectives.

In the process of achieving these objectives, the study 
scope is limited to several factors, as given in the following: 
(1) The methodology is applied to a single test environment, 
which includes a pedestrian bridge and a limited length of 
connecting adjacent roads. (2) The study’s methodological 
approach investigates a practical and scalable drive-by moni
toring solution, hence, it does not consider vehicle parame
ters. (3) The mode identification process is limited to bridge 
natural and operational frequency identification. (4) The 
robot is limited to two steady speeds (slow 0.4 m/s and fast 
1.0 m/s), which will be the robot speed rates during tests. 
(5) Driving on different trajectories on the bridge is limited 
to three path, south, middle, and north sides of the bridge 
as the drive coverage amount of the bridge is deemed suffi
cient. (6) No structural damage scenario or a decision- 
making mechanism is considered in the tests, which will be 
further reflected in the future studies.

5. Methodology to identify bridge modes via robot

Before a vehicle enters a bridge, it also has the opportunity 
to collect data from the adjacent roadway connecting the 
bridge. This data collected from the road can then be used 
as a reference for filtering the data collected from the 

bridge, potentially enabling the isolation of the bridge’s 
response, which is critical for identifying its vibration 
modes. Such a methodology can be very practical in real- 
world applications and possible to achieve under certain 
assumptions, such as the same driving conditions and road 
surfaces for both on the road before entering the bridge and 
over the bridge. While the same driving conditions (e.g., 
driving at the same steady speed) can be maintained before 
and over the bridge, it can be difficult to have identical road 
(pavement) surfaces for both.

Authors preliminary investigations conducted in a con
trolled, real-world environment, with data collected on 
asphalt and concrete surfaces, as typically bridge road sur
face material is concrete rather than asphalt, suggest a no- 
to-minimal difference in the frequency domain of both the 
data collected from road and bridge (see Figure A1 in 
Appendix), indicating the successful potential of implement
ing this methodology in real-world cases. While these initial 
findings are informative, a more comprehensive analysis is 
necessary to validate the methodology and its assumptions.

This paper’s methodology is illustrated in Figure 2 and 
involves the following steps: (1) Data collection from both 
the roadway and the bridge. (2) Matching the data lengths if 
they are unequal to ensure compatibility for frequency 
domain operations and analysis. (3) Performing a Fast 
Fourier Transformation (FFT) on both signals to transform 
them into the frequency domain. (4) Scaling the amplitudes 
of the frequency spectra of the data collected from road to 
align it with the data collected from the bridge or the other 
way around. (5) Filtering the frequency spectrum of the 
bridge data using the amplitude spectrum of the road data 
to isolate the bridge’s response in the frequency domain. (6) 
Identifying the vibration modes of the bridge structure using 
the isolated bridge data.

There are several external factors influencing the vibra
tion data collected by the vehicle as it traverses over the 
bridge, such as road surface/pavement roughness, vehicle 
characteristics (e.g., vehicle engine, suspension, tire, vehicle 
structural natural frequency - note that robot’s natural fre
quency band was identified in the 12–15 Hz ranges by 
applying a tapping force on the robot’s structure, see Figure 
A2 in Appendix), driving speeds (e.g., slow, fast), and other 
noises (e.g., wind, nearby vibrations, electromagnetic inter
ference, or measurement noises). The goal is to isolate the 
bridge response from these external influences to leave the 
intrinsic vibration characteristics of the bridge alone for 
accurate mode identification, which is typically carried out 
in the frequency domain. The decomposition of complex 
signals into their frequency domains facilitates clear identifi
cation of natural frequencies associated with the bridge 
structure. When data is collected by a vehicle traversing 
over a bridge, the measured signal from the bridge in the 
frequency domain, denoted as HBðf Þ is represented in equa
tion:

HB fð Þ ¼ Hb fð Þ þHr fð Þ þHv fð Þ þHs fð Þ þHnðf Þ (1) 

where Hbðf Þ represents the bridge response in the frequency 
domain, Hrðf Þ the road response, Hvðf Þ the vehicle 
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dynamics, Hsðf Þ the driving speeds and Hnðf Þ the noise. 
Each component’s frequency response, denoted as Hðf Þ, 
describes how it reacts across different frequency ranges, 
which captures the amplitude and phase of the signal as 
functions of frequency.

Similarly, when data is collected by a vehicle driving over 
an adjacent road connecting bridge, the measured signal 
from the road in the frequency domain, denoted as HRðf Þ;
contains the same components except for the Hb fð Þ; is 
represented in equation:

HR fð Þ ¼ Hr fð Þ þHv fð Þ þ Hs fð Þ þHnðf Þ (2) 

These representations, Equations (1) and (2) assume linear 
superimposition, where the measured signal is treated as the 
sum of individual contributing components; an extensive dis
cussion about this is made in Section 8. In addition, for this 
methodology to work theoretically, the speed of the vehicle 
must be identical on both roads and bridges. During the tests 
it was noticed that the frequency domain changed when the 
speeds varied, as changing speeds caused shifts in the data. 
However, the impact of changing road and bridge surface 
materials on the data needs to be examined further. For this 
reason, it is assumed in this study that the material of the 
road surface and bridge road surface must be identical for 
this methodology to work, which is the case in the presented 
test environment. This is further discussed in Section 8.

5.1. Data collection

The data collection process is simply the vibration data col
lection by the vehicle as it traverses the road before and 

over the bridge. In this process, it is vital to have an equal 
length of data from the road as the data from the bridge so 
that the operations and analysis in the frequency domain 
can be achieved accurately. While this methodology only 
considers the data from the road before entering the bridge, 
the combination of data from both roads (and then possibly 
averaging in frequency domain later, which could make it 
more robust based on how different the road surfaces are 
from the bridge roadway surface) or the data only from the 
road after exiting the bridge can be considered for later 
operations and analysis. Nevertheless, it is essential to have 
an equal length of data from both data sources. If not, the 
longer data source is truncated to match the shorter one. 
Note that the mean removal process is implemented for all 
the data collected.

5.2. Data length matching

Three methods were tested in data length matching before 
choosing the suitable method: (1) resampling the shorter 
signal, (2) zero padding the shorter signal, and (3) truncat
ing the longer signal. It was observed that the application of 
resampling and zero padding yielded less favorable results. 
The resampling technique introduced interpolation artifacts 
that affected the signals’ frequency domain results. The zero 
padding method caused spectral leakage and edge effects in 
the data, which introduced discontinuities in the frequency 
domain. However, the authors speculate that generative arti
ficial intelligence models (Luleci et al., 2023; Luleci & 
Catbas, 2023) can be utilized to extend the shorter signal.

Figure 2. Methodology to identify the bridge vibration modes. Each methodological step from 1 to 6 can be followed in the following subsections in the same 
numbering order.
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The methodology herein employed data truncation for 
simplicity. During the experimentation, due to the shorter 
length of the road than the bridge, the data from the bridge 
was truncated to match data measured at the road. In the 
process, it was ensured that the data from the bridge was 
truncated from both ends of the signal (near fixed-end parts 
of the bridge) to leave the mid-parts of the data as much as 
possible so that the semantically richest part of the data 
about the bridge was untouched. Both the frequency 
domains of truncated and untruncated data were then com
pared to ensure the truncated data measured from the 
bridge contained the same relevant bridge information as 
the untruncated one. Overall, this truncation process 
requires supervision or a controlled automation process in 
real-life procedures. However, this will not be required in 
real-world settings because there will be sufficient data from 
the roads, so matching the data length will not be needed.

5.3. Frequency domain transformation

Following the data length matching process, the data from 
the bridge and truncated data from the road are trans
formed into their frequency domains by taking their FFT. 
This enables the subsequent operations in the frequency 
domains of these data.

5.4. Data FFT amplitude matching

The FFT amplitudes of the truncated data from the bridge 
and data from the road are matched by scaling the ampli
tudes of the road one, which could also be implemented in 
another way. The scaling process is applied to avoid discrep
ancies in the FFT amplitude range that could lead to 
incorrect results in the subsequent filtering process, as the 
amplitude ranges of the two data sources are not inherently 
the same. Thus, to make both data consistent, the FFT 
amplitude range of the data collected from the road is scaled 
to the range of truncated data measured from the bridge. 
The computation process is presented in the following 
paragraphs.

The amplitude spectra for both signals are calculated as 
the magnitudes of the FFT results using equation:

Hðf Þj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ReðH fð ÞÞ2 þ ImðH fð ÞÞ2
q

(2) 

where Hðf Þj j is the amplitude spectra of the data computed 
(bridge or road), and Reð�Þ and Imð�Þ are the real and 
imaginary parts of the frequency responses, respectively.

Then, the scaling factor is determined by the ratio of the 
total energy (sum of amplitudes) across all frequency com
ponents using equation:

Scaling Factor ¼

PN=2
k¼0

HB, truncðf Þj j

PN=2
k¼0

HRðf Þj j
(3) 

where N is the total number of samples in the time-domain 
signals, and HB, truncðf Þj j represents the amplitude spectra of 
the truncated bridge data, computed from an FFT of an 

N-sample signal. The summation in Eq. (3) is performed 
over the positive frequency components up to N/2, as only 
positive frequency bins of the FFT are considered. Then, the 
amplitude spectrum of the data collected from the road 
HRðf Þj j is scaled using the computed scaling factor as in 

equation:

HR, scalðf Þj j ¼ Scaling Factor � jHRðf Þj (4) 

where HR, scalðf Þj j is the amplitude spectrum of the data (col
lected from the road) after scaling.

5.5. Data FFT amplitude filtering

Following the amplitude matching, a filtering process is 
implemented in the frequency domain. Specifically, the 
amplitude spectra of the scaled road data HR, scalðf Þj j are 
used to filter the truncated bridge data HB, truncðf Þj j element- 
wise, thereby isolating the amplitude spectra of the bridge 
response Hbðf Þj j; as presented in Eq. (5). As a result of this 
computation, other components involved in HB, truncðf Þj j are 
then also removed (Eq. (1)), such as road, vehicle, speed, 
and noises, due to being the same in the data collected from 
the road:

Hbðf Þj j ¼ jHB, truncðf Þj − jHR, scal fð Þj (5) 

Then, the isolated bridge response full frequency spec
trum is reconstructed by combining the amplitude Hbðf Þj j

with the original phase /HB fð Þ of the bridge data in equa
tion:

Hb fð Þ ¼ jHbðf Þj � ej/HB fð Þ (6) 

where ej/HB fð Þ encodes the phase of the frequency response. 
Following this operation, the isolated bridge frequency spec
trum Hb fð Þ can be converted back to the time domain uti
lizing the inverse FFT technique.

5.6. Bridge mode identification

The isolated bridge response frequency spectrum Hb fð Þ is 
then utilized to identify the vibration modes of the bridge. 
For this particular task, the Power Spectral Density (PSD) of 
the bridge response is calculated, which takes the square of 
the magnitude of the frequency spectrum Hbðf Þj j

2 and nor
malizes it by the frequency bandwidth to represent the 
power per unit frequency. This process ensures that the 
energy content of the signal is accurately distributed across 
its frequency range, regardless of the data length or sam
pling rate. The PSD is chosen to identify vibration modes 
because it highlights dominant frequencies more effectively, 
even in the presence of noise or weaker signals. The nor
malization provides a clearer and more reliable view of the 
energy associated with each frequency.

For the rest of the study, the RMS (Root Mean Square) 
of the PSD was utilized as a guiding statistical baseline for 
identifying the bridge’s vibration modes. RMS represents the 
square root of the average power of the signal and is dir
ectly related to the signal’s standard deviation r when the 
signal has zero mean, which is the case. In this context, the 

8 F. LULECI ET AL.



use of 2� RMS (or 2r) as a threshold for identifying peaks 
corresponds to capturing approximately 95.4% of the energy 
within the signal, based on the properties of a Gaussian dis
tribution. This ensures that peaks exceeding this threshold 
are statistically significant deviations from the noise floor, 
minimizing the likelihood of false positives while guiding us 
to capture relevant vibration modes. The choice of using 2r 

instead of 3r reflects a balance between sensitivity and spe
cificity as 3r captures 99.7%, which would be more restrict
ive. Both thresholds (2r and 3r) were tested and it was 
observed that using these thresholds in guiding for identify
ing the modes did not influence results for this dataset. 
Overall, this 2� RMS threshold guides us on which peaks 
to take into consideration during the mode identification 
process.

6. Equipment used for test

In testing the methodology for different experimentation 
cases, this study utilized a four-wheeled UGV equipped with 
multi-modal sensors to collect the response data from the 
test road and bridge (as mentioned earlier, only the onboard 
accelerometer was utilized for drive-by monitoring in this 
study). For benchmarking purposes of the data collected 
from the robot over the bridge, the study also utilized a 
portable SHM system with cabled accelerometers installed at 
the bridge during the test. The following paragraphs intro
duce the details of the test equipment.

The UGV, named Cypector (Cyberþ Inspector), is based 
on the Husky model (A 200) robot manufactured by 
Clearpath Robotics and designed by Civil Infrastructure 
Technologies for Resilience and Safety (CITRS) at the 
University of Central Florida. Cypector is a 4-wheeled UGV 
featuring a robust wheeled chassis. In this study, Cypector 
has been enhanced with additional accessories, some 
mounted on the top plate and others placed underneath, as 
depicted in Figure 3. These accessories include two VLP-16 
LiDARs from Velodyne, an ADK Infrared Camera and two 
Blackfly S Cameras from FLIR, a GPS-18x from Garmin, a 
ZED 2 Stereo Camera from Stereolab, an Omni 60 360 

Camera from Occam, a Gigabit Wireless Router, and a 
GPU-enabled Mini-ITX computer and an IMU (Internal 
Measurement Unit) from Microstrain 3DM-GX5-25, located 
beneath the plate.

Furthermore, Robot Operating System (ROS) (ROS 1) 
serves as the middleware framework for Cypector, providing 
a collection of open-source tools and libraries that facilitate 
seamless communication between software and hardware. 
ROS abstracts hardware complexities and manages commu
nication between various physical devices and software com
ponents installed on the robot. This is achieved through 
device drivers that interface with hardware components like 
Cypector’s accessories. For user interaction, Cypector broad
casts a Service Set Identifier (SSID) from its access point 
(router), which is connected to the robot’s internal com
puter. The user can connect to this SSID, after which an IP 
address is assigned to the user’s computer via static or 
DHCP methods. Once connected, the user can access 
Cypector’s internal computer through SSH to control and 
operate the robot.

The response data collection from the road and bridge is 
achieved using this onboard IMU sensor in Cypector, which 
is capable of collecting 3-axis vibrations, with vertical vibra
tions being the primary focus in this study due to their criti
cal role in structural response characterization. IMUs play 
an integral role in robotics, providing essential data on 
acceleration and angular velocity to estimate position, orien
tation, and motion. As a fundamental component in almost 
all robotic systems, IMUs ensure navigation and stability, 
which are indispensable for tasks that require accurate envi
ronmental interaction and control. In this study, the IMU is 
not only used for data acquisition for bridge mode identifi
cation but is also needed for Cypector’s operational use and 
reliability.

Table 1 presents the datasheet of the sensors utilized in 
the experiments regarding their relevant accelerometer capa
bilities. As mentioned earlier, the Microstrain 3DM-GX5-25 
IMU sensor is equipped in the robot, facilitating the vibra
tion data acquisition. On the other hand, for the reference 
monitoring dataset from the bridge, the PCB M603C01 

Figure 3. Cypector (mobile robot) and its multi-modal sensors and other equipment.
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accelerometer sensors were used, connected to the NI 9234 
module within the National Instruments (NI) cDAQ-9178 
chassis.

7. Experimentation scenarios and some remarks

The following paragraphs provide a comprehensive overview 
of the experimentation setups, detailing the scenarios 
designed to evaluate the methodology and identify bridge 
vibration modes, along with real-time drive-by details from 
the tests and additional remarks on tests. Table 2 summa
rizes the experimentation scenarios, while Figure 4 illus
trates the test setups and sensor configurations. The 
reference test utilized a portable SHM system equipped with 
PCB accelerometers installed at four strategic locations on 
the bridge (see Figure 3 for sensor locations) conducted 
under a hammer-tapping excitation. These locations were 
chosen to capture both bending and torsional modes, which 
constitute the majority of the structural modes of the test 
bridge.

For the tests involving the robot, three distinct driving 
scenarios were considered: slow driving at 0.4 m/s, fast 

driving at 1.0 m/s, and a combined drive-and-stop case at 
1.0 m/s (each stop is for 10 s and seven stops along the 
bridge). These scenarios were designed to investigate the 
impact of varying driving speeds on mode identification 
results, with 0.4 m/s and 1.0 m/s representing the lowest and 
highest steady speeds achievable by Cypector. Each test sce
nario was conducted in three separate runs, with the robot 
traversing different sides of the bridge (each run aligned 
with the corresponding side of the road) to evaluate whether 
driving on different sides influenced the mode identification 
outcomes.

Additionally, excitation was applied to the bridge by hav
ing two people asynchronously jump at specific locations 
during the drive-by test (two opposite sides of the bridge to 
enable torsional dynamic impact on the bridge—see 
Figure 4). This applied excitation, two people jumping at 
separate locations, was chosen to simulate the operational 
conditions this bridge regularly experiences, such as student 
jogging and running. This approach was necessary, as rely
ing on the timing of natural pedestrian activity proved 
impractical for the drive-by testing. Note that an initial test 
conducted included a no-excitation (ambient) scenario; 
however, this case was set aside for more focused future 

Table 1. Datasheet of the accelerometer sensors used in the tests: PCB M603C01 and Microstrain 3DM-GX5-25 IMU within the robot.

Image Sensor Measurement range Resolution Non-Linearity Noise density

PCB M603C01 ±50 g 350 mg ±1 % 5 mg/�Hz

Microstrain 3DM-GX5-25 ±40 g 0.02 mg (þ/− 8 g) ±0.02 % 20 mg/�Hz (2 g)

Table 2. Experimentation scenarios (J and S denote jumping and stop, respectively, while the numbers 0.4 and 1 represent the drive speed of the robot).

Test code Equipment Robot run Robot drive status Equipment detail

Reference Portable SHM system – – NI cDAQ-9178 chassis with NI 9234 module and PCB M603C01 accelerometers
J.4 Mobile Robot 1 0.4 m/s Mobile Robot (Cypector) equipped with multi-modal sensors

2
3

J1 Mobile Robot 1 1.0 m/s
2
3

J1S Mobile Robot 1 1.0 m/s & Stop
2
3

Figure 4. Illustration of the bridge test setups.
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analysis due to the limited identification of vibration modes, 
capturing only up to two modes.

Tests are conducted in order, starting with the Reference 
test and then J.4, J1, and J1S. Figure 5 shows the bridge and 
road data in both the time and frequency domains, along 
with the reconstructed isolated bridge data in the time 
domain, specifically for the Run 1 cases of J1S and J.4. In 
the J1S scenario, the drive and stop periods are distinctly 
observable. Additionally, one individual jumping on the 
west side of the bridge exhibited greater jumping intensity 
compared to the person on the east side, resulting in higher 
peaks on the west side, as reflected in the data. Moreover, 
the figure illustrates that when the robot drives at a slow 
speed, a few dominant peaks around 11 Hz are observed. As 
the robot speed increases, this peak broadens, spreading 
across the frequency range of 8 Hz to 13 Hz, overlapping the 
bridge’s 5th and 6th modes. Further discussion and analysis 
are provided in the next section.

During the test, the vibration response data collected by 
the robot are monitored in real-time, in the time and fre
quency domains, successfully identifying some of the bridge 
vibration modes in all the tests. Figure 6 highlights an 
example of this real-time mode identification, showing the 
1st and 2nd modes over a specific data collection period as 
the robot traversed the bridge (this is for the J.4 test, Run 

3). The robot’s visual sensors, including its stereo camera 
and LiDARs, were further used for robot navigation and to 
track its surroundings and path, as visualized in Figure 6. 
The figure shows real-time images captured from the stereo 
camera and the point cloud generated by the LiDARs (both 
vertical and horizontal). This dual capability of simultan
eously capturing and analyzing the vibration and visual data 
at the bridge in real time highlights the potential of robot- 
based indirect monitoring to facilitate rapid decision- 
making and early detection of bridge structural condition 
changes.

Although CVs and other sensor-equipped vehicles can 
also perform real-time monitoring, each has distinct 
advantages that make them valuable in different aspects of 
bridge assessment. CV-based drive-by monitoring can excel 
at providing widespread, general assessments of bridge net
works due to their ability to collect data on a large scale. 
Their continuous operation across diverse routes makes 
them highly scalable for monitoring trends and identifying 
areas of concern over extensive infrastructure networks. 
However, the use of robots introduces critical advantages 
that enhance the reliability and precision of bridge mode 
identification for further detailed (localized) investigations. 
Robots are designed to follow precise, repeatable trajecto
ries, ensuring consistent, high-quality data collection 

Figure 5. Some of the bridge and road data in the time and frequency domains.
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unaffected by traffic variability. Purpose-built for monitor
ing tasks, they operate at adjustable speeds and carry 
advanced multi-modal sensors like Cypector has, which 
enables simultaneous vibration and visual data capture 
with potentially improved accuracy. Additionally, robots 
are not affected by noise from vehicle dynamics, such as 
suspension or engine vibrations, and can operate in condi
tions where CVs are unsuitable, including bridge closures, 
low-speed monitoring, or accessing hard-to-reach areas 
such as suspension bridge ropes, towers, or the underside 
of the deck, which can be examined using climbing robots 
(Jang et al., 2021).

The complementary strengths of CVs and robots suggest 
that the best approach would involve their combined use. 
CVs could be utilized for general network-wide monitoring, 
quickly identifying potential issues, while robots could pro
vide in-depth, targeted assessments of identified hotspots. 
This integrated strategy would maximize efficiency and 
accuracy and offer a comprehensive solution for effective 
bridge monitoring and maintenance. Further discussion on 
this is presented in Section 9.

8. Results and discussion

This section presents the results alongside a detailed discus
sion and analysis. First, the mode identification results from 

the reference test are presented in Figure 7. To validate the 
current test, which is named reference SHM dataset (2024), 
the identified bridge modes were benchmarked against a 
past dataset collected in 2022, which was carried out under 
a more extensive testing setup. As shown in the figure, up 
to eight vibration modes were identified in the current data
set, with frequency variations of up to approximately 1% 
compared to the past dataset. These slight variations may be 
attributed to unknown structural changes, weather condi
tions, or testing-related errors. Despite these minor discrep
ancies, the mode identification results for the current 
reference dataset (2024) are deemed reliable and serve as a 
robust baseline to validate this study’s methodology for 
robot-based drive-by monitoring. The peak between 12.5 Hz 
to 15 Hz in the current test (2024) does not appear in the 
appear in the past test (2022). This peak may be a new 
mode, but this is unlikely due to the fact that authors also 
did not observe this peak clearly in the drive-by results, as 
presented in the next figures. This will require a further 
investigation. It should be noted that the scope of this study 
is limited to identifying bridge frequencies and does not 
extend to analyzing mode shapes.

Next, the mode identification results from the robot- 
based indirect monitoring tests (J.4, J1, and J1S, as 
indicated in Table 2) are presented in the following figures, 
Figure 8-10. Each figure presents the results for three 

Figure 6. Some of the test visuals: Pictures taken during the test, real-time identified bridge vibration modes, and visuals including point cloud data and images 
captured by the robot’s LiDARs and stereo camera.
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different runs (Run 1–3, each on different sides of the 
bridge; see Table 2 and Figure 3), and for each run, three 
plots and a table are presented in an analysis order. 
Following the arrows in a clockwise direction, the first plot 
presents the frequency domain (FFT) visualization of the 
truncated bridge data, road data, and isolated bridge data 
(which was also truncated due to the truncation applied to 
the bridge data). The second plot shows the frequency 
domain visualization (but in PSD) of only the truncated 
bridge data, where the bridge modes were identified to com
pare them with the mode results on the isolated bridge data 
(next plot) to evaluate the paper’s methodology. The third 
plot shows the PSD of the isolated bridge data along with 
the identified modes. Then, the modes identified from the 
isolated bridge data and their differences from the reference 
test dataset (2024) are listed in the table next to the plot.

Considering all nine tests conducted through robot-based 
drive-by monitoring using the methodology proposed in 
this study, the first six modes of the bridge were identified 
with a variation of up to 7% compared to the reference test, 
with an overall average variation of 2%. Overall, for every 
run in each scenario (J.4, J1, J1S), the robot was able to cap
ture at least three modes, with an average mode identifica
tion error rate “for each scenario” at 2%. From the results, 
it can be seen that in the J1S case, more modes were identi
fied in total (10 modes), and then J1 and J.4 (9 modes 
each). It is noted that making stops (seven stops) as the 
robot traverses the bridge helped the robot capture more 
data, particularly clean data. Still, due to the fast drive speed 
(1.0 m/s) throughout the bridge, the clarity of the data was 
low, making it difficult to identify the mode peaks, which 
could potentially lead to selecting the wrong peaks as 
modes. These false modes (wrong peaks) are highlighted in 
Figure 9-10 as they overlap with the actual bridge mode 
(modes 5–6) since it is known from reference dataset (see 
Figure 7). The remaining peaks (which are named residuals, 
explained in the next paragraphs) do not overlap with a 
known bridge mode; thus, they are not highlighted. 
Furthermore, the authors hypothesize that the ideal scenario 
for capturing more bridge modes with more distinctive 
peaks would be the case of drive-stop at a slower speed 
(0.4 m/s) rather than a fast one. In summary, among the 
three scenarios, the J.4 case provided the clearest mode 
peaks in terms of data clarity, while the J1S scenario cap
tured the highest number of modes.

Driving on the sides or in the middle of the bridge did 
not make a significant difference in mode identification 
results. While it is generally anticipated that driving along 
the middle of the bridge would more effectively capture 
bending modes, and torsional modes would be more pro
nounced when driving along the sides, the findings indicate 
a more nuanced outcome. If each scenario is examined indi
vidually, in every Run 2 (middle), torsional modes are gen
erally missing. On the other hand, in Run 1 (south side) 
and Run 3 (north side), both torsional and bending modes 
appeared at the same number of identified modes overall. 
However, this will likely differ based on bridge type, as the 
flexibility and geometry of the bridge can influence different 
mode capture based on the robot trajectory on the bridge. 
For example, in stiffer bridges with localized vibrations, 
detecting certain modes depends heavily on the robot’s tra
jectory, while in more flexible bridges, modes are more uni
formly distributed, which enables easier detection across 
trajectories. Thus, conducting runs along all sides of the 
bridge would be the best practice to ensure comprehensive 
mode identification, particularly when dealing with diverse 
bridge structures.

When the robot is at a slow speed, there are a few irregu
lar peaks around 11 Hz in the frequency domain of the road 
data. However, this small range irregularity spreads across 
to a larger range of 8 Hz to 13 Hz when the robot speed 
increases, overlapping the bridge’s 5th and 6th modes, as evi
dent in the FFT plots shown in the figures (Figures 5,8-10). 
This irregularity is caused by road data HRðf Þ; which con
tains information about the robot’s dynamics, driving speed, 
and noises (Eq. (2)). As seen in the figures, the paper’s 
methodology effectively filters the road data HRðf Þ from the 
bridge data HBðf Þ; thereby discarding interfering compo
nents such as vehicle effects, speed variations, and noise, 
and isolating the bridge response Hb fð Þ: Without the isola
tion methodology, identifying modes can be challenging due 
to the involved irregularities in the frequency domain, and 
this could lead to potentially selecting false modes like those 
noted in the J1 and J1S test cases (Figures 9-10), a total of 
four false modes.

Moreover, while the fundamental (first) mode, and in 
some cases, the second and third modes, were visible in the 
unprocessed frequency domain, the methodology enhances 
mode identification by refining the frequency content. 
Specifically, the methodology herein offers three key bene
fits. First, as can be seen in Figure 8-10, it mitigates the 

Figure 7. Vibration modes of the test bridge: Current reference dataset (2024) and legacy reference dataset (2022).
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Figure 8. Test J.4 results: Drive-by mode identification results for three runs when the robot is at a slow speed and the bridge is under jumping excitation.
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Figure 9. Test J.4 results: Drive-by mode identification results for three runs when the robot is at a fast speed and the bridge is under jumping excitation.
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Figure 10. Test J.4 results: Drive-by mode identification results for three runs when the robot is at a fast speed and makes multiple stops (7), and the bridge is 
under jumping excitation.
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influence of road roughness, vehicle-induced dynamics, and 
other contributory noises in the frequency domain, allowing 
true bridge mode peaks to stand out more clearly and 
improving the detection of subtler frequencies. Second, it 
prevents false mode identification, as seen in scenarios like 
J1-Run1–3 (Figure 9) and J1S-Run1 (Figure 10), where up 
to four incorrect mode peaks were observed. Third, it facili
tates the identification of additional modes that were previ
ously undetectable, such as Mode 2 in J1S-Run1 (Figure 10) 
and Mode 3 in J.4-Run3 (Figure 9).

Nevertheless, as can be observed in the figures, there are 
minor residuals left after applying the isolation method
ology. These residuals are more pronounced for the J1 and 
J1S cases (fast and fast & stop) than the J.4 case (slow). 
Filtering the amplitude spectra of the bridge data using the 
road data (as shown in Eq. (5)) should have isolated the 
bridge response component. However, the persistence of 
these residuals suggests four possible contributing factors:

1. The road surface cannot be completely identical to the 
bridge surface due to its heterogeneity, potentially caus
ing these residuals after the isolation methodology.

2. In J1S, the robot’s speed varied between drive and stop 
intervals. Since the road data used for filtering was col
lected at a constant speed, applying it to the bridge data 
with varying speed contributed to the formation of 
residuals. As a result, the residuals in J1S are slightly 
more noticeable than those in J1.

3. Equations (1-2) ignore other potentially involved fac
tors, such as the dynamic interactions between vehicle- 
road and vehicle-bridge, which arise from coupling 
effects caused by the vehicle’s motion, including forces 
transmitted through the tires and the corresponding 
structural responses of the road and bridge to the mov
ing load.

4. While the methodology assumes linear superposition, 
non-linear interactions, such as dynamic dependencies 
and higher-order harmonics, are likely to occur in real
ity, introducing complexities that cannot be fully cap
tured or eliminated through simple filtering. This 
results in residuals when road data is used to filter 
bridge data, reflecting the unaccounted influence of 
these non-linear dynamics.

Accounting for these hypotheses, Equation (1) is revised 
and presented in equation:

HBðf Þ ¼ F Hbðf Þ, Hrðf Þ, Hvðf Þ, Hsðf Þ, Hv−rðf Þ, Hv−bðf Þ, Hnðf Þ
� �

(7) 

where Hv−rðf Þ represents the frequency response of vehicle- 
road interaction and Hv−bðf Þ the vehicle-bridge interaction. 
The function F mathematically accounts for the combin
ation and interaction of all the components contributing to 
the data measured from the bridge, HBðf Þ; capturing both 
linear superpositions and nonlinear interactions that influ
ence the collected total signal. The same revision can be 
applied to Eq. (2) without including the bridge-related com
ponent, Hbðf Þ:

Building on these revisions, future work should prioritize 
refining the paper’s methodology to more effectively isolate 
the bridge response from other contributing factors while 
accounting for non-linear interactions and dynamic depend
encies. In the isolation process, leveraging the data collected 
from the adjacent road can be an effective approach, like 
the methodology presented herein, to separate road-related 
influences from the bridge response. Also, collecting large 
sets of data will provide a better statistical characterization, 
which will also be explored in future work. Employing 
advanced signal processing techniques, such as variational 
mode decomposition (OBrien et al., 2017) and deep learning 
methods (Luleci et al., 2022), can significantly enhance the 
ability to capture and address these non-linear influences. 
These methodologies should involve rigorous experimental 
validation through controlled and real-world tests encom
passing different bridge types, varied surface types, vehicle 
speeds, and excitation levels, which will provide critical 
insights, fostering further optimization and improving the 
robustness of this methodology herein or other similar 
approaches.

Another important avenue for future work is expanding 
the extracted modal parameters beyond frequencies to 
include mode shapes, which are crucial for localizing struc
tural damage and understanding bridge dynamics. While 
the current setup identifies modal frequencies, mode shape 
extraction could be achieved by deploying multiple sensor- 
equipped UGVs along different trajectories or synchronizing 
drive-by passes for spatial interpolation. Additionally, 
addressing environmental influences, particularly tempera
ture variations, is vital for reliable long-term monitoring. 
Temperature fluctuations can alter modal properties, poten
tially masking structural damage and necessitating compen
sation strategies. Future efforts should integrate temperature 
correction models, data normalization, or auxiliary environ
mental sensors on the UGV platform to enhance robustness. 
By refining response isolation, incorporating environmental 
compensation, and expanding extracted parameters, this 
filtering-based methodology can become a more compre
hensive and practical solution for real-world drive-by bridge 
monitoring.

9. Multi-tiered bridge network reliability with CVs 
and robots

The adoption of CVs and robot-based systems for bridge 
assessment can offer a robust framework for bridge network 
reliability monitoring, as illustrated in Figure 11 and 
inspired by Prof Franpol’s bridge network works, like in 
Figure 1. In the context of structural reliability, the reliabil
ity index b is a dimensionless measure of safety and can be 
defined with the well-known formulation:

b ¼
lc − ldffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ r2d
p (8) 

where lc is mean capacity, ld is mean demand, r2
c is vari

ance in capacity, and r2
d variance in demand. b quantifies 

the safety margin between the bridge’s capacity and the 
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imposed demand, and a higher b corresponds to a lower 
probability of failure Pf ; which is the likelihood that the 
demand exceeds the capacity. Pf is related to the reliability 
index b through the cumulative distribution function of the 
standard normal distribution U:

Pf ¼ 1 − UðbÞ (9) 

where UðbÞ represents the reliability R; which is the 
probability that the safety margin is greater than zero.

In a conceptual scenario, a bridge mode i identified by n 
vehicle pass over a bridge produces in amount of bridge 
modes. The mean l and variance r of this bridge mode dis
tribution represent the demand parameters ld and r2

d:

With known capacity parameters lc and r2
c from the estab

lished baseline distributions or other analytic approaches, 
the bridge reliability index b can be identified. When the 
bridge has a structural issue, the deviation in b could be 
even more pronounced. The authors’ future work will also 
focus on the utilization of CV-based monitoring for 
network-level identification of structural changes that can be 
incorporated in the life cycle assessment of structures at the 
network level.

For each bridge, CVs facilitate the estimation of demand 
parameters by generating distributions of bridge frequency 

data across multiple vehicle passes. CVs essentially provide 
a near real-time picture of the demand imposed on the net
work, identifying potential anomalies or shifts that may 
indicate structural issues. The widespread deployment of 
CVs ensures systematic monitoring of all bridges, including 
those in remote areas, helping prioritize bridges for further 
assessment based on identified demand parameters. 
However, due to variability in vehicle dynamics, road condi
tions, noise in CV data, or more detailed assessment 
requirements, additional approaches might be often needed 
to refine the accuracy of reliability estimates for critical or 
high-priority structures.

Robots may complement CVs by addressing the limita
tions of demand parameter estimation and helping identify 
capacity parameters. Once CV-based monitoring identifies a 
potential hotspot or a bridge requiring further attention, 
robots are deployed for detailed assessments. Unlike CVs, 
robots operate under controlled conditions, ensuring 
repeatable and consistent data collection. Equipped with 
multi-modal sensors, robots’ dual capability to capture both 
vibration data and visual data further enhances the accuracy 
of capacity parameter identification. For example, robots 
identify visible signs of deterioration, such as cracks, spal
ling, or surface wear, which can inform the baseline capacity 

Figure 11. Multi-tiered framework for bridge network reliability monitoring using CVs and mobile robots.
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and its variability while assisting in defining the capacity 
parameters. This localized and detailed data collection 
ensures that the capacity parameters reflect the actual struc
tural state and reduces uncertainties in “reliability 
estimation.” This can be achieved either by better calibrating 
structural models or some other type of formulation.

At the bridge network level, CVs continuously gather 
data to identify demand parameters for all bridges in the 
network. This data provides the foundation for calculating 
preliminary reliability indices for each bridge. Bridges with 
lower reliability indices, which may indicate potential struc
tural issues, are flagged for further investigation. Robots are 
then deployed to these flagged locations for targeted assess
ments. By providing accurate capacity estimates and refining 
demand estimates through localized data collection, robots 
improve the reliability index calculations for these critical 
structures. This integrated approach has the potential to 
ensure that bridges with the greatest need for maintenance 
or intervention are prioritized, enabling efficient resource 
allocation. Advanced data analytics and centralized monitor
ing platforms can be used to scale this approach. Data from 
CVs can be aggregated and processed in near real-time to 
estimate reliability indices for each bridge. When robots are 
deployed, their data can update these indices with higher 
precision. This iterative process would allow for dynamic 
network monitoring to update reliability indices as new data 
becomes available continuously.

10. Conclusions

This study explored a practical and scalable methodology for 
indirect bridge monitoring using a mobile robot equipped 
with multi-modal sensors. It addressed challenges such as 
road roughness, vehicle dynamics, and other noises to isolate 
bridge responses by leveraging data from the adjacent road
ways connecting the bridge for accurate mode identification. 
It further investigated varying driving speeds, drive-stop sce
narios, and robot trajectories to evaluate the bridge mode 
detection conditions. The study’s methodology was applied to 
a bridge for various drive-by monitoring scenarios under 
pedestrian jumping excitation, with the resulting bridge vibra
tion modes analyzed and discussed extensively. The study’s 
key conclusions are summarized as follows:

� The proposed filtering-based methodology effectively mit
igates the influence of road roughness, vehicle dynamics, 
and external noise, enhancing the clarity and accuracy of 
bridge mode identification. As a result, this approach 
allowed for the successful identification of up to the first 
six bridge modes across nine test scenarios, with an aver
age variation of only 2% from the reference test.

� Among the test scenarios, the drive-stop case captured 
the highest number of modes due to increased data vol
ume and clarity, while the slow-driving scenario pro
vided the clearest mode peaks. Stopping intervals 
improved overall data quality, whereas fast speeds 
reduced peak clarity, potentially leading to incorrect 
mode selection. The optimal approach for capturing 

more distinctive bridge modes is hypothesized to be a 
drive-stop strategy at a slower speed.

� Driving on the sides or in the middle of the bridge did 
not significantly affect mode identification results, 
although torsional modes were generally missing in mid
dle runs. Both torsional and bending modes appeared 
equally in runs along the south and north sides. 
However, these findings may vary depending on the 
bridge’s flexibility and geometry, as stiffer bridges with 
localized vibrations may require specific trajectories for 
mode detection, while more flexible bridges allow for 
easier detection across trajectories. Conducting runs 
along all sides of the bridge is recommended to ensure 
comprehensive mode identification.

� The minor residuals after applying the isolation method
ology underscore limitations arising from road surface 
heterogeneity, vehicle-road/vehicle-bridge interactions, 
and non-linear dynamics, which are not fully addressed 
by the methodology herein. Future refinements, validated 
through rigorous real-world testing, should incorporate 
advanced signal processing techniques and account for 
these non-linear effects to enhance the accuracy and 
robustness of bridge response isolation.

� Future work will focus on refining the methodology to 
better isolate bridge responses by addressing non-linear 
interactions and leveraging data from adjacent roads. 
Larger datasets and advanced techniques like variational 
mode decomposition and deep learning will be consid
ered to enhance analysis. Validation across varied bridge 
types, surface conditions, and vehicle speeds will opti
mize and strengthen the approach to support network- 
level life cycle analysis and evaluation.

� The integration of CVs and robots creates a multi-tiered 
framework for bridge network reliability monitoring, lev
eraging their complementary strengths to maximize effi
ciency and accuracy. CVs excel at network-level 
assessments, providing continuous estimations of 
demand parameters across the network, while robots 
deliver higher precision through element-level evalua
tions. With their dual capability for real-time bridge 
mode identification and visual data analysis, robots can 
enhance demand estimations and inform capacity param
eters through detailed, localized assessments. This com
bined approach potentially enables accurate reliability 
index calculations, facilitates rapid decision-making, sup
ports early detection of bridge condition changes, and 
promotes proactive infrastructure management with opti
mized resource allocation.
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Appendix

Figure A1. Frequency domains of the data collected via robot on different roads and speeds.

Figure A2. Frequency domain of the robot after tapping test for 25 s on the robot itself.
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